|
|
alexandræ.fr · a characterisation of a weak* connexivity in some* abelian logics
a characterisation of a weak* connexivity in some* abelian logicsdecember 5th, 2025
in standard logic, we have double-negation elimination, of which one of the formulations is \(\overline{\vdash((\alpha\to\bot)\to\bot)\to\alpha}.\) abelian logics are logics that validate the more general axiom of relativity, namely \(\overline{\vdash((\alpha\to\beta)\to\beta)\to\alpha}.\) in that vein, one can generate an abelian logic \(\textsf L\) with value-functional semantics, where the set of values forms some kind of abelian group \(\langle V_{\textsf L},+\rangle\) and in which :
- \(0_{\textsf L}\in V_{\textsf L}^+\)
- \((\alpha\to\beta)^{\textsf L}=\beta^{\textsf L}-\alpha^{\textsf L},\)
- \((\neg\alpha)^{\textsf L}=\textrm-\alpha^{\textsf L}.\)
note that \(0_{\textsf L}\) is necessarily a glut, as \(\textrm-0_{\textsf L}=0_{\textsf L}\in V_{\textsf L}^+.\) given abelian logics tend to generalise negation as well, with \(\neg_BA:=A\to B,\) having \(\neg A\) be a case where \(B\) is a glut, thus of which the negation is (also) designated in particular, like \(0_{\textsf L},\) technically makes sense. (estrada-gonzález, 2020)
a connexive logic, on the other hand, is generally defined as a logic which validates the following :
- aristotle's theses : \(\overline{\vdash\neg(\alpha\to\neg\alpha)},\) and \(\overline{\vdash\neg(\neg\alpha\to\alpha)}.\)
- boethius' theses : \(\overline{\vdash(\alpha\to\beta)\to\neg(\alpha\to\neg\beta)},\) and \(\overline{\vdash(\alpha\to\neg\beta)\to\neg(\alpha\to\beta)}.\)
- non-symmetry of implication : for some \(a,b\) wff, \(\not\vdash(a\to b)\to(b\to a)\).
however, on top of the way we proposed to construct some abelian logics earlier, there's an incompatibility that quickly arises :
\begin{equation*}\begin{split}
(\neg(\alpha\to\textrm-\alpha))^{\textsf L}
&=\textrm-(\textrm-\alpha^{\textsf L}-\alpha^{\textsf L})\\
&=\textrm2\alpha^{\textsf L}
\end{split}\end{equation*}
therefore, \(2V_{\textsf L}\subseteq V_{\textsf L}^+.\) however,
\begin{equation*}\begin{split}
((\alpha\to\beta)\to(\beta\to\alpha))^{\textsf L}
&=\alpha^{\textsf L}-\beta^{\textsf L}-(\beta^{\textsf L}-\alpha^{\textsf L})\\
&=2\alpha^{\textsf L}-2\beta^{\textsf L}\\
&=2(\alpha^{\textsf L}-\beta^{\textsf L})\\
&\in2V_{\textsf L}\subseteq V_{\textsf L}^+
\end{split}\end{equation*}
if we hope to talk about connexive kinds of these kinds of abelian logics, we may need to weaken that last condition as such, thus describing a form of weak* connexive logic :
- aristotle's theses : \(\overline{\vdash\neg(\alpha\to\neg\alpha)},\) and \(\overline{\vdash\neg(\neg\alpha\to\alpha)}.\)
- boethius' theses : \(\overline{\vdash(\alpha\to\beta)\to\neg(\alpha\to\neg\beta)},\) and \(\overline{\vdash(\alpha\to\neg\beta)\to\neg(\alpha\to\beta)}.\)
- weakened non-symmetry of implication : for some \(a,b\) wff, \(\vdash a\to b\) and \(\not\vdash b\to a.\)
characterisation theorem :
for all abelian group \(\langle V_{\textsf L},+\rangle\) in which :
- \(0_{\textsf L}\in V_{\textsf L}^+\)
- \((\alpha\to\beta)^{\textsf L}=\beta^{\textsf L}-\alpha^{\textsf L},\)
- \((\neg\alpha)^{\textsf L}=\textrm-\alpha^{\textsf L},\)
there is an equivalence between the following items :
- \(\textsf L\) is weakly* connexive, in the sense that it verifies :
- aristotle's theses : \(\overline{\vdash\neg(\alpha\to\neg\alpha)},\) and \(\overline{\vdash\neg(\neg\alpha\to\alpha)}.\)
- boethius' theses : \(\overline{\vdash(\alpha\to\beta)\to\neg(\alpha\to\neg\beta)},\) and \(\overline{\vdash(\alpha\to\neg\beta)\to\neg(\alpha\to\beta)}.\)
- weakened non-symmetry of implication : for some \(a,b\) wff, \(\vdash a\to b\) and \(\not\vdash b\to a.\)
- \(2V_{\textsf L}\subsetneq V_{\textsf L}^+\) and \(\textrm-g\not\in V_{\textsf L}^+\) for at least some \(g\in V_{\textsf L}^+.\)
proof.
\(\boxed\Longrightarrow\) assume \(\textsf L\) to be weakly* connexive. let's first show that \(2V_{\textsf L}\subseteq V_{\textsf L}^+:\)
\begin{equation*}\begin{split}
(\neg(\alpha\to\neg\alpha))^{\textsf L}
&=\textrm-(\textrm-\alpha^{\textsf L}-\alpha^{\textsf L})\\
&=\textrm2\alpha^{\textsf L}\\
&\in2V_{\textsf L}
\end{split}\end{equation*}
this shows the desired result. now, let's show that \(\textrm-g\not\in V_{\textsf L}^+\) for at least some \(g\in V_{\textsf L}^+.\) we know there are some \(a,b\) wff such that \(\vdash a\to b\) and \(\not\vdash b\to a.\) thus, $$\begin{split}
b^{\textsf L}-a^{\textsf L}
&=(a\to b)^{\textsf L}\\
&\in V_{\textsf L}^+\\
\textrm-(b^{\textsf L}-a^{\textsf L})
&=a^{\textsf L}-b^{\textsf L}\\
&=(b\to a)^{\textsf L}\\
&\not\in V_{\textsf L}^+
\end{split}
$$
which means \(g=b^{\textsf L}-a^{\textsf L}\) works. given \(2V_{\textsf L}\) is closed by inversion, \(g\in V_{\textsf L}^+\setminus2V_{\textsf L},\) so \(2V_{\textsf L}\ne V_{\textsf L}^+.\)
\(\boxed\Longleftarrow\) assume \(\textsf L\) be such, that \(2V_{\textsf L}\subsetneq V_{\textsf L}^+\) and \(\textrm-g\not\in V_{\textsf L}^+\) for at least some \(g\in V_{\textsf L}^+.\)
\begin{equation*}
\begin{split}
(\neg(\alpha\to\neg\alpha))^{\textsf L}
&=\textrm-(\textrm-\alpha^{\textsf L}-\alpha^{\textsf L})\\
&=2\alpha^{\textsf L}\\
&\in2V_{\textsf L}\subset V_{\textsf L}^+\\
(\neg(\neg\alpha\to\alpha))^{\textsf L}
&=\textrm-(\alpha^{\textsf L}-(\textrm-\alpha^{\textsf L}))\\
&=\textrm-2\alpha^{\textsf L}\\
&\in2V_{\textsf L}\subset V_{\textsf L}^+\\
((\alpha\to\beta)\to\neg(\alpha\to\neg\beta))^{\textsf L}
&=\textrm-(\textrm-\beta^{\textsf L}-\alpha^{\textsf L})-(\beta^{\textsf L}-\alpha^{\textsf L})\\
&=\beta^{\textsf L}+\alpha^{\textsf L}-\beta^{\textsf L}+\alpha^{\textsf L}\\
&=2\alpha^{\textsf L}\\
&\in2V_{\textsf L}\subset V_{\textsf L}^+\\
((\alpha\to\neg\beta)\to\neg(\alpha\to\beta))^{\textsf L}
&=\textrm-(\beta^{\textsf L}-\alpha^{\textsf L})-(\textrm-\beta^{\textsf L}-\alpha^{\textsf L})\\
&=\textrm-\beta^{\textsf L}+\alpha^{\textsf L}+\beta^{\textsf L}+\alpha^{\textsf L}\\
&=2\alpha^{\textsf L}\\
&\in2V_{\textsf L}\subset V_{\textsf L}^+
\end{split}
\end{equation*}
finally, let \(g\in V_{\textsf L}^+\) such that \(\textrm-g\not\in V_{\textsf L}^+,\) which exists by assumption. we can take some \(\alpha,\beta\) wff, and \(f\) a truth function, such that \(f(\alpha)=0_{\textsf L}\) and \(f(\beta)=g.\) this way,
\begin{equation*}
\begin{split}
f(\alpha\to\beta)
&=f(\beta)-f(\alpha)\\
&=g\in V_{\textsf L}^+\\
f(\beta\to\alpha)
&=f(\alpha)-f(\beta)\\
&=\textrm-g\not\in V_{\textsf L}^+
\end{split}
\end{equation*}
thus, \(\textsf L\) is indeed weakly* connexive.
such connexive abelian logics described in this characterisation, are also strongly inconsistent, as for any \(\textsf L\) such logic, \((\alpha\to\neg\alpha)^{ \textsf L}=\textrm-2\alpha^{\textsf L}\in2V_{\textsf L}\subset V_{\textsf L}^+,\) so we have both \(\overline{\vdash\neg(\alpha\to\neg\alpha)}\) and \(\overline{\vdash\alpha\to\neg\alpha}.\) well, at least, paraconsistency has become quite cool, but moreover, these logics do not satisfy modus ponens : given \(\alpha,\beta\) wff, and \(f\) truth fuction such that \(f(\alpha)=g\) and \(f(\beta)=\textrm-g,\) with \(g\in V_{\textsf L}^+\) such that \(\textrm-g\in V_{\textsf L}^+,\) we have \(f(\alpha\to\beta)=\textrm-2g\in2V_{\textsf L}\subset V_{\textsf L}^+\) and \(f(\alpha)=g\in V_{\textsf L}^+,\) yet \(f(\beta)=\textrm-g\not\in V^+.\) the fact they don't satisfy modus ponens, in my opinion, legitimise the weakening of the rule of non-symetry of implication here ; but well, not having this fundamental inference can be controversial, though it doesn't shock all that much at this point.
nonetheless, they do satisfy contraposition : \((\alpha\to\beta)^{\textsf L}=\beta^{\textsf L}-\alpha^{\textsf L}=(\textrm-\alpha^{\textsf L}-(\textrm-\beta^{\textsf L}))=(\neg\beta\to\neg\alpha)^{\textsf L}.\) it's also easy to prove they invalidate : affirming the consequent, negating the antecedent \((\textrm{hint}:g-(\textrm-g));\) positive paradox \((\textrm{hint}:(\alpha^{\textsf L}-g)-\alpha^{\textsf L});\) vacuous truth \((\textrm{hint}:(\textrm-g-\alpha^{\textsf L})-(\textrm-\alpha^{\textsf L}))\ldots\)
| 〈 | a logic of rock–paper–scissors... |
|
|