Many-Valued Logic PlayGround

See also : MaGIC (Slaney) ; Source code (please don't judge... lol)
Number of values :
Values :

  • designated ? yes / no
Description :

Negation :
AA
neither
Conjunction :
A & BB = neither
A = neither
Disjunction :
A ∨ BB = neither
A = neither
Implication :
A → BB = neither
A = neither

Custom inference test

Number of variables :
Number of premises :
Number of conclusions :

Inference tests' results
Double negation
$$\frac A{{\sim}{\sim}A}$$ Valid ? Yes !
$$\frac{{\sim}{\sim}A}A$$ Valid ? Yes !
$$\overline{A\to{\sim}{\sim}A}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{{\sim}{\sim}A\to A}$$ Valid ? Nope.
Counter-example :
A = neither
Self-negation
$$\frac A{{\sim}A}$$ Valid ? Yes !
$$\frac{{\sim}A}A$$ Valid ? Yes !
$$\overline{A\to{\sim}A}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{{\sim}A\to A}$$ Valid ? Nope.
Counter-example :
A = neither

Idempotency of &
$$\frac A{A\;\&\;A}$$ Valid ? Yes !
$$\frac{A\;\&\;A}A$$ Valid ? Yes !
$$\overline{A\to(A\;\&\;A)}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{(A\;\&\;A)\to A}$$ Valid ? Nope.
Counter-example :
A = neither
Law of noncontradiction
$$\overline{{\sim}(A\;\&\;{\sim}A)}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{{\sim}({\sim}A\;\&\;A)}$$ Valid ? Nope.
Counter-example :
A = neither
& intro.
$$\frac{A\quad B}{A\;\&\;B}$$ Valid ? Yes !
Simplification, & elim.
$$\frac{A\;\&\;B}A$$ Valid ? Yes !
$$\frac{A\;\&\;B}B$$ Valid ? Yes !
$$\overline{(A\;\&\;B)\to A}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{(A\;\&\;B)\to B}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Symmetry of &
$$\frac{A\;\&\;B}{B\;\&\;A}$$ Valid ? Yes !
$$\overline{(A\;\&\;B)\to(B\;\&\;A)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Ex contradictione quodlibet
$$\frac{A\quad{\sim}A}B$$ Valid ? Yes !
$$\frac{A\;\&\;{\sim}A}B$$ Valid ? Yes !
$$\frac{{\sim}A\;\&\;A}B$$ Valid ? Yes !
$$\overline{(A\;\&\;{\sim}A)\to B}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{({\sim}A\;\&\;A)\to B}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Associativity of &
$$\frac{(A\;\&\;B)\;\&\;C}{A\;\&\;(B\;\&\;C)}$$ Valid ? Yes !
$$\frac{A\;\&\;(B\;\&\;C)}{(A\;\&\;B)\;\&\;C}$$ Valid ? Yes !

Idempotency of ∨
$$\frac A{A\lor A}$$ Valid ? Yes !
$$\frac{A\lor A}A$$ Valid ? Yes !
$$\overline{A\to(A\lor A)}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{(A\lor A)\to A}$$ Valid ? Nope.
Counter-example :
A = neither
Law of excluded middle
$$\overline{A\lor{\sim}A}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{{\sim}A\lor A}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{A\to(B\lor{\sim}B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{A\to({\sim}B\lor B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Addition, ∨ intro.
$$\frac A{A\lor B}$$ Valid ? Yes !
$$\frac B{A\lor B}$$ Valid ? Yes !
$$\overline{A\to(A\lor B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{B\to(A\lor B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Exclusive ∨ intro.
$$\frac{A\quad{\sim}B}{A\lor B}$$ Valid ? Yes !
$$\frac{{\sim}A\quad B}{A\lor B}$$ Valid ? Yes !
Affirming a disjunct, exclusive ∨ elim.
$$\frac{A\lor B\quad A}{{\sim}B}$$ Valid ? Yes !
$$\frac{A\lor B\quad B}{{\sim}A}$$ Valid ? Yes !
Dual nd ∨ elim.
$$\frac{A\lor B}{A\quad B}$$ Valid ? Yes !
Symmetry of ∨
$$\frac{A\lor B}{B\lor A}$$ Valid ? Yes !
$$\overline{(A\lor B)\to(B\lor A)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Disjunctive syllogism
$$\frac{A\lor B\quad{\sim}A}B$$ Valid ? Yes !
$$\frac{A\lor B\quad{\sim}B}A$$ Valid ? Yes !
Disjunctive syllogism (standard implication form)
$$\frac{{\sim}A\lor B\quad A}B$$ Valid ? Yes !
$$\frac{A\lor{\sim}B\quad B}A$$ Valid ? Yes !
∨ elim. (with conditionals)
$$\frac{A\lor B\quad A\to C\quad B\to C}C$$ Valid ? Yes !
Associativity of ∨
$$\frac{(A\lor B)\lor C}{A\lor(B\lor C)}$$ Valid ? Yes !
$$\frac{A\lor(B\lor C)}{(A\lor B)\lor C}$$ Valid ? Yes !
Constructive dilemma
$$\frac{A\lor B\quad A\to C\quad B\to D}{C\lor D}$$ Valid ? Yes !
$$\frac{A\lor B\quad A\to C\quad B\to D}{D\lor C}$$ Valid ? Yes !
Destructive dilemma
$$\frac{A\to C\quad B\to D\quad{\sim}C\lor{\sim}D}{{\sim}A\lor{\sim}B}$$ Valid ? Yes !
$$\frac{A\to C\quad B\to D\quad{\sim}C\lor{\sim}D}{{\sim}B\lor{\sim}A}$$ Valid ? Yes !

De Morgan's laws
$$\frac{{\sim}(A\;\&\;B)}{{\sim}A\lor{\sim}B}$$ Valid ? Yes !
$$\frac{{\sim}A\lor{\sim}B}{{\sim}(A\;\&\;B)}$$ Valid ? Yes !
$$\frac{{\sim}(A\lor B)}{{\sim}A\;\&\;{\sim}B}$$ Valid ? Yes !
$$\frac{{\sim}A\;\&\;{\sim}B}{{\sim}(A\lor B)}$$ Valid ? Yes !
Distributivity
$$\frac{A\;\&\;(B\lor C)}{(A\;\&\;B)\lor(A\;\&\;C)}$$ Valid ? Yes !
$$\frac{A\lor(B\;\&\;C)}{(A\lor B)\;\&\;(A\lor C)}$$ Valid ? Yes !
$$\frac{(B\lor C)\;\&\;A}{(B\;\&\;A)\lor(C\;\&\;A)}$$ Valid ? Yes !
$$\frac{(B\;\&\;C)\lor A}{(B\lor A)\;\&\;(C\lor A)}$$ Valid ? Yes !
$$\frac{(A\;\&\;B)\lor(A\;\&\;C)}{A\;\&\;(B\lor C)}$$ Valid ? Yes !
$$\frac{(A\lor B)\;\&\;(A\lor C)}{A\lor(B\;\&\;C)}$$ Valid ? Yes !
$$\frac{(B\;\&\;A)\lor(C\;\&\;A)}{(B\lor C)\;\&\;A}$$ Valid ? Yes !
$$\frac{(B\lor A)\;\&\;(C\lor A)}{(B\;\&\;C)\lor A}$$ Valid ? Yes !

Reflexivity of →
$$\overline{A\to A}$$ Valid ? Nope.
Counter-example :
A = neither
Irreflexivity of →
$$\overline{{\sim}(A\to A)}$$ Valid ? Nope.
Counter-example :
A = neither
Aristotle's theses
$$\overline{{\sim}(A\to{\sim}A)}$$ Valid ? Nope.
Counter-example :
A = neither
$$\overline{{\sim}({\sim}A\to A)}$$ Valid ? Nope.
Counter-example :
A = neither
Modus ponens, → elim.
$$\frac{A\to B\quad A}B$$ Valid ? Yes !
Modus tollens
$$\frac{A\to B\quad{\sim}B}{{\sim}A}$$ Valid ? Yes !
Positive paradox
$$\overline{B\to(A\to B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Vacuous truth
$$\overline{{\sim}A\to(A\to B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Contrapositive
$$\frac{{\sim}B\to{\sim}A}{A\to B}$$ Valid ? Yes !
$$\frac{A\to B}{{\sim}B\to{\sim}A}$$ Valid ? Yes !
Symmetry of →
$$\frac{A\to B}{B\to A}$$ Valid ? Yes !
Conjunctive conditional
$$\frac{A\quad B}{A\to B}$$ Valid ? Yes !
$$\frac{A\to B}A$$ Valid ? Yes !
$$\frac{A\to B}B$$ Valid ? Yes !
Standard conditional
$$\frac{A\to B}{{\sim}A\lor B}$$ Valid ? Yes !
$$\frac{A\to B}{B\lor{\sim}A}$$ Valid ? Yes !
$$\frac{{\sim}A\lor B}{A\to B}$$ Valid ? Yes !
$$\frac{B\lor{\sim}A}{A\to B}$$ Valid ? Yes !
$$\frac{A\to B}{{\sim}(A\;\&\;{\sim}B)}$$ Valid ? Yes !
$$\frac{A\to B}{{\sim}({\sim}B\;\&\;A)}$$ Valid ? Yes !
$$\frac{{\sim}(A\;\&\;{\sim}B)}{A\to B}$$ Valid ? Yes !
$$\frac{{\sim}({\sim}B\;\&\;A)}{A\to B}$$ Valid ? Yes !
Standard conditional negation
$$\frac{{\sim}(A\to B)}A$$ Valid ? Yes !
$$\frac{{\sim}(A\to B)}{{\sim}B}$$ Valid ? Yes !
$$\frac{{\sim}(A\to B)}{A\;\&\;{\sim}B}$$ Valid ? Yes !
$$\frac{A\;\&\;{\sim}B}{{\sim}(A\to B)}$$ Valid ? Yes !
$$\frac{A\quad{\sim}B}{{\sim}(A\to B)}$$ Valid ? Yes !
Associativity of →
$$\frac{(A\to B)\to C}{A\to(B\to C)}$$ Valid ? Yes !
$$\frac{A\to(B\to C)}{(A\to B)\to C}$$ Valid ? Yes !
Boethius's theses
$$\overline{(A\to B)\to{\sim}(A\to{\sim}B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{(A\to{\sim}B)\to{\sim}(A\to B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Boethius's theses (rule form)
$$\frac{A\to B}{{\sim}(A\to{\sim}B)}$$ Valid ? Yes !
$$\frac{A\to{\sim}B}{{\sim}(A\to B)}$$ Valid ? Yes !
Reciprocal Boethius's theses
$$\overline{{\sim}(A\to{\sim}B)\to(A\to B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{{\sim}(A\to B)\to(A\to{\sim}B)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Reciprocal Boethius's theses (rule form)
$$\frac{{\sim}(A\to{\sim}B)}{A\to B}$$ Valid ? Yes !
$$\frac{{\sim}(A\to B)}{A\to{\sim}B}$$ Valid ? Yes !
Peirce's law
$$\overline{((A\to B)\to A)\to A}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Axiom of relativity
$$\overline{((A\to B)\to B)\to A}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Absorption
$$\frac{A\to B}{A\to(A\;\&\;B)}$$ Valid ? Yes !
$$\frac{A\to B}{A\to(B\;\&\;A)}$$ Valid ? Yes !
Abelard's theses
$$\overline{{\sim}((A\to B)\;\&\;({\sim}A\to B))}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{{\sim}(({\sim}A\to B)\;\&\;({\sim}A\to B))}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{{\sim}((A\to B)\;\&\;(A\to{\sim}B))}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
$$\overline{{\sim}((A\to{\sim}B)\;\&\;({\sim}A\to B))}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither
Exportation/importation (currying)
$$\frac{A\to(B\to C)}{(A\;\&\;B)\to C}$$ Valid ? Yes !
$$\frac{(A\;\&\;B)\to C}{A\to(B\to C)}$$ Valid ? Yes !
$$\overline{(A\to(B\to C))\to((A\;\&\;B)\to C)}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither,
C = neither
$$\overline{((A\;\&\;B)\to C)\to(A\to(B\to C))}$$ Valid ? Nope.
Counter-example :
A = neither,
B = neither,
C = neither
Hypothetical syllogism
$$\frac{A\to B\quad B\to C}{A\to C}$$ Valid ? Yes !
Affirming the consequent
$$\frac{A\to B\quad B}A$$ Valid ? Yes !
Negating the antecedent
$$\frac{A\to B\quad{\sim}A}{{\sim}B}$$ Valid ? Yes !